DOCUOMENT RESOME

ED 204 812 — | CS 206 S27
AOTHOR. rowe, Neill -

AN A Grammar &S a Programming Landnage. Artificial

. : " Intelligence Memo 391. y : :

" INSTITOTION Massachusetts Inst. of Tech., Cambridge. Artificial

_ o ~Intelligence Yab. . ,

SPONS AGENCY National-Science Poundation, Washington, D.C. ~— T
RPPORT NO 1.0GO-M-39
PUB DATE Oct 76 :
GRANT © - NSF-EC-40708-% .
NOTFE - 26p. :
RDRS- PRIC® MF01/PC02 .Plus Postage. ' '
DESCRIPTORS Artificial Intelliqence: Computer Assisted:

Instruction: *Computer Oriented Programs: Elementary

secondary Education: *Generativé Grammars

Tnstructional Materfals: Programing: *Programing

Languages: *Sentence Structure: Teaching Mathods
IDENTIFTERS *1ogo System

ABSTRACT _

' . ~ Student projects that involve writing generative
grammars in the computer language, "LOGO," are described in this
paper, which presents a grammar-running control structure that allows

~e+udents *+o mod!€fv and improve the grammar interpreter itself while
learning how a simple kind of computer parser works. Inclujed are
procedures for proagraming a computer tc write postcards, sentences,
poetry, and music: (1) draw 2 robot face, snowflakes, hydrbcarbon
structures, and hills: (2) introduce context sensitivity: (3) define
number theorv: and (4) parse or analyze word strings. (AEA)

ﬁ************************

* reproductions supplied by EDRS are the hest that can be made

* ‘from the original document. ‘
[]{U:* *********#**#****t************#***#***********************t**********

U.S. OEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EOUCATION

e S .o “ » EDUCATIONAL RESOURCES INFORMATION
- . ' ~ - CENTER (ERIC) .
. - . - ® his document has been reproduced as .
o » N X tecimvet trom the person or organzation
ongingting it
Minar changes bave hisen made to 1mprove
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
. - . ® Puints of view o OpInoNs stated m this docu
ment da not necessanly represent official N
ARTIHCIM‘ lmmcENCE LABORANRY , position ot policy.
o
i k .
o AI MEMO 391 LOGO MEMO 39
-
N e NN _ St -) e g
LN GRAMMAR o
o
LaJ

AS A PROGRAMMING LANGUAGE .

~

Neil Rowe

» October 1976

ABSTRACT

This paper discusses some student projects involvipgigeperayivg

‘_ grammars. While grammars are usually associated with linguistics,
their usefulness goes far beyond just "language” to many different

domairns. Their application is general enough to make grammars a

sort of programming language in their own right.

A simple grammar-running control structure is presented, uncomplicated

and very suitable for student tinkering. So not only'can stgdents

write grammars, but they can modify and improve the grammar interpreter

itself, learning something about how a simple kind of computer parser

works. C

The work reported in this paper was supported in part by the National Science

Foundation under grant number EC40708X and conaucted at the Artificial Intelligence

Laboratory, Massachusetts Ingtitute of Technology, Cambridge, Mass.. The views and

conclusions contained in this paper are those of the author and should not be

interpreted as necessarily representing the official policies, either expressed or
: t\\ implied, of the National Science Foundation or the United States Government.

‘Neil Rowe -

Contents -
_ 1. Introduction
2. A one-command combutér language

-3.-An axim;:le:_mpos,tcachw.titl,ng-pLer_m

2

' GRAMMAR AS A PROGRAMMING l.ANGUAGE

1)

lea O O

q, Writinu santences
5. Writing poetry
" 6. Writing music
7. Drawing a }o_b'ot face
8 Drawing snowflakes
"~ 9, Drawing hydrocarbons
10. Drawing hills
11. Introducing contexf-sensltivlty

12. Number. theory

/o , ’
13. Additional projects

14, Fllﬂher control structure modifications
15. Parsing: turning the grammar around
16. Educational utility | |
Appendix: a Logo iqlr\plementation
Acknowledgements |

References

o o o

10
11
12

14
14
15
16
17
1i8
19
22
22

Neil Rowe ‘ 3 GRANhiAR AS A PROGRAMMING LANGUAGE

The first professor 1 saw was in a very large room, with forty puplls about him. After salutation,
- observing me to look earnestly upon a frame, which took up the greatest part of both the length and
breadth of the room, he said perhaps I might wonder to see him employed in a project for improving
__speculative knowledge by practical and mechanical operations. Eut the world would soon be sensible of its
hsdfulﬁe—s‘s',Trid'hTflittFr?d“hiiﬁ%ii"“that‘a‘mre”noblo"exaltecj‘thought"nover-sprang—in*any—other—man-’s——--——
head. Every one knew how laborious the usual method is of attaining to arts and sciences; whereas by his
contrivance the most ignorant person at a reasonable charge, and with a little bodily labour, may write
* books in philosophy; poetry, politics, law, mathematics, and theology, without the least assistance from
genius or study. He then led me to the frame, about the sides whereof all his pupils stood in ranks. It was.
twenty foot square, placed in the middle of the room. The superficies was composed of several. bits of
wood, about the bigness of a die, but some larger than others. They weré all linked together by slender
wireés. These bits of wood were covered on every square with paper_pasted on-them; and on these
papers were written all the words of their language, in their several-moods, tenses, and declensions, but
without any order. The professor then desired me.to observe, for he-was going to set his engine at work.
The pupils at his command took each of them hold of an iron handle, whereot there were forty fixed round
the edges of the frame, and giving them a sudden turn, the whole disposition of the words was entirely
changed. He then commanded six and thirty of the lads to read the several lines softly as they appeared
upon the frame; and where they found three of four words together that might make part of a sentence,
they dictated to the four remaining boys who were scribes. This work was repeated three or four times,
and at every turn the engine was so contrived that the words shifted into new places, as the square bits of
“wood moved upside down. o i ’

Six hours a day the young students were employed in this labour; and the professor showed me
several volumes in large folio already collected, of broken sentences, which he intended to piece together;
and out of those rich materials to give the world a complete body of all arts and sciences; which however
might be still improved, and much expedited, if the public would raise a fund for making and employing five
hundred such frames in Lagado, and oblige the managers to contribute in common their several collections.

' He assured me, that this invention had employed all his thoughts from his youth, that he had
emptied the whole vocabulary into his frame, and made the strictest computation of the general proportion
there-is in books bctwe_eh the numbers of particles, nouns, and verbs, and other parts of speech.

N\

Jonathan Swift, Travels into Several Remote Nafions; of the World (1726$, I: 5

Neil Rowe. - - 4 . GRAMMAR AS A PROGRAMMING LANGUAGE -

-

. The painting machine had a wheel to hold a (roousand smears of color and a bruish mounted on a
pivoted arm. The brush could be'moved -along the arm by one motor, while a second motor worked the arm
around on its pivot. A third rotated the paint whee!. or "auto-palette.”

Random numbers generatéd by the tape ware fed into this System, controlling all three variables.
The brush could dip up any color, transfer jt to #-v of a hundred .and fifty thousand positions over @
' prepared canvas, and dip again, leaving a dot. Pe\ween dottings, it moved through a powerful cleaning’
solution. ' e ' . L)
This cartesian process would go on until:either thé canvas was completely cqvered or until Ank’
liked what he saw and stopped it. He called the process rand-pointillisme in advance, knowing how
important it was for his former colleagues to have a name to fasten upon fram the start. Ank was -
prepared to explain in detail the philosophy behind this "marriage of random number and Seurat, which '
guarantees all the benefits of luminosity, color and harmony®. S . .
. Now he set it into motion. There were a hundred and fifty million [sic] potential paintings in there
somewhere, a hundred and fifty million pure abstract patterns without "meaning™ or “intention®. What he
would see, in just a few hburs, would be the end of so-called Humanism, the end of sentiment and prejudice
-- the dawn of Mechanism. . : -

»

LY

What he actually saw was a close copy of David’s Coronation of Napoleon. The. details were

blurry, but his painting differed from the original in only one respect. . S
. The archbishop’s face was modeled in bright greens. _ .

Ank tried a fresh canvas. The brush rose and fell, faster than the eye could follow, and a -
"Remington” took shape: a mounted Indian wheeling his pony to fire an arrow into the flank of a galloping’
bison. : : . '

, "Except the pony wasn't wheeling and the bison did not gallop.- Instead, both "stood on®, or were
solidified into, thick furry pedestals. . ‘

"Surrealism?™ he whimpered. “I've given up my whole career for this cheap surrealism?”

. It was almost time to go to Glen Dale’s party. He threw the two ruined canvases in the corner
and went to wash his hands. Instead of shaving, he decided to have a drink somewhere.

John Stadek, The Muller-Fokker Effect (1971),¢ch. 6 _

Neil Rowe L ' . 5 GRAMMAR AS A PROGRAMMING LANGUAGE"

-

1. Introduction
This paper discusses some student projects involving generetlve grammars. While grammars are '
usually associated wlth linguistics, their usefulness goes‘hr beyond: just “"language” to many dlfterent
domasins., Tneir eqpllcatlon is .general e'nough to .make grammars s sort of programming language in their
own right. : o o RS
A) - v ’ ’ » :

. A simple grammar-running control structure is presented, uncomplicsted and very suitable for
stueent tlnkering.- So not only can_,'students write grammars, but thay can modify and improve the grammer
interpreter itself, leerning something about how a simple kind of co.mputer parser _works. |
2. A one-command computer language T

| One way to explaln the conjrol structure is to thlnk of it as a one-command computer langﬂege.
_‘lt_s one command is called R (for Rules). Slnce my expernence has been with the |en§uage Logo, 1 vwll talk in |

“terms of an implem'enta'tion of this language within Logo.l'2 (Eee Appe-ndix for details of an
lmplementation.) | |
The R (“rule” or “replace”) command can be expreesed as .a tunctlon (or procedure) with two st .
arguments: ‘ _ ’ _ |
'R [NAME] [J0) R - _ | :
The command works always on a single list (strlng) of words.. It replaces in the list particular words by
other particular words. That above command, for lnstanco, says to look for all occurrences of the word -
NAME in the list and change them to JOE. We can also replace one word by several: |

R [NAME] [THE PRESIDENT OF THE UNITED STATES] :

Oftentimes you're going to want to make choices when replacing stutf: That is, you won’t always :

want to replace NAME with the same name JOE. We might want for variety to replace it occesronelly wlth o

TOM, DICK, or HARRY We can write thls as tollows :

R [NAME] [(JOE TOM DICK HARRY)] : \ = 0
The parentheses mean fur the computer to choose only one of the things inside. them. (To keep lhingo .
simple, I assume random choice with. each item hevlng-equal probabllity. If you want one item to be more

“ likely than the others, put more, than one instance of it into the st | \%

‘We can comblne the br:ackets and parentheses ln_commend§:

-2

Neil Rowe S : 6 GRAMMAR AS A PROGRAMMING LANGUAGE

~

R [NAME] [(JOE TOM DICK HARRY) C. (JONES DOE DOAKES)] » _
which replaces NAME by JOE C. JONES, HARRY C. DOE, and so-on. Or we can put brackets within
_ parenthesized expressions: . _ _
R _[NA_ME] [(JOE [TéRRlBLE TOM] [DICK THE INSURANCE SALESMAN] HARRY) C. (JONES DOE
DOAKES)] - ' S
Remember, brackets mean use everything inside them; birénthoses mean choose one and only one of the
things inside them. | |
3. An e:i‘:ample" -- a postoard writing program
R commands by thomsélvoé gron‘t too intorésting. You'have to put several of fhem together. In
Logo we can do this by defining a. procedure. Here's a way to use the R language to write -postcards, an
. . - Q) = . ’ . - . * -
idea suggested by a ninth grade student of mine:
70 POSTCARD L L
10 R [POSTCARD] [DEAR NAME , PHRASE.. PHRASE . PHRASE . SIGNOFF, NAME]
- 20 R [NAME] [(TOM DICK HARRY SALLY SUE SANDRA OCCUPANT)] .
30 R [PHRASE] [([HAVING A GREAT TIME] [WISH YOU WERE HERE] [WEATHER'S GREAT]
[SURF'S UP] [BE SEEING YOU SOON] [CAN'T WAIT TO GET HOME])]

40 R [SIGNOFF] [(LOVE {BEST WISHES] [GOOD LUCK] [SO LONG FOR NOW])]
END : . e ,

The ‘control str.ucturo works on these R commands in tho given order. It starts out with a 'Iist _(stﬂng)
-consisting of one wo_rd_. the name of the procedure (POSTCARD). -lt then goes down the list §f R commands,
making rep_la:enients_ of words in the string wherever it can. It then prints o_ut?the final list. SOmWf the
"po_stgards" tﬂh.is procedure can produce inciude: \ . .
DEAR SALLY , BE SEEING YQU SOON . WXSH YOU WERE HERE . WEATHER'S GREAT . | GOOD LUCK., HARRY
DEAR TOM , CAN'T WAIT TO GET HOME . SURF'S UP. HAVING A GREAT TIME . BEST WISHES , DICK .
'DEAR OCCUPANT; WE‘A'_THER’S’GREAT‘;*HAVING A"GREAT TIME . BE SEEING YOU SOON . L___OVESANDRA
4. Wrgtiné' sentences '

J We g:'an’also-writo more traditional "grammla,rs". Here's a procedure to write some simple Ef_\gllsh.

sentences:

. . . - I M ° . N
Neil l_lowe L A . f . 7 CRAMMAR AS A PROCRAMMING LANGUAGE

,,To SIMPSENTENCE ‘
10 R [SIMPSENTENCE] [NOUNPHRASE VERBPHRASE] .
20 R [VERBPHRASE] [VERB NOUNPHRASE]
30 R [NOUNPHRASE] [{{DETERMINER ADJECTIVE NOUN] NAME)]
100 R [VERE] [(LIKES HATES BOTHERS BEFRIENDS)]
110 R [DETERMINER] [(A THE SOME)]
120 R [ADJECTIVE] [(BIG TINY CHEERFUL SAD HAPPY GREEN PERPLEXED)]
130 R [NOUN] [(BOY GIRL COMPUTER ROBOT MARTIAN)]
é:lo R [NAME] [(TOM DICK HARRY SALLY SUE SANDRA)]
- END

AR

lt can generate the following

THE CHEERFUL ROBOT BOTHERS SOME SAD GIRL
~ TOM LIKES THE GREEN COMPUTER : .
A HAPPY MARTIAN BEFRIENDS SALLY |

<

. The nice thing is that yoﬁ can add rew features quita easily to this sentence generator. For
instance, you can get senfences like

SOME BIG BOY IS SAD
‘ A CHEERFUL ROBOT IS PERPLEXED
SANDRA IS CHEERFUL

i

) 'by Just changing line 20 to: :
20 R [VERBPHRASE] [(fvERB NOUNPHRASE] (1S ADJECTIVE])]
And, if you Iike, you can Inclqde adverb; in your sentences. Change line 20 to:
20R [VERBPHRASEj [ADVERB ([VERB NOUNPHRASE] [IS ADJECTlVE])]
anid add a line-90: |

90R [ADVERB] [(OFTEN SURPRlSlNGLYQPERHAPS DUI'IFLI.LY)]

i
. Example

" DICK OFTEN IS HAPPY : N)
A GREEN GIRL DUTIFULLY BEFRIEM)S THE BIG ROBOT <

%
Or suppose we want to allow an indefinite number of adjectlve; in front of the noun, like

THE BlG HAPPY GREEN ROBOT

which we can do by ° 7

30 R [NOUNPHRASE] [([DETERMINER ADJSTRING NOUN] NAME)]
- 35R [ADJSTRiNG] [ADJECTIVE (ADJSTRING [])]

(The bracket pair {] means the “"empty list" or the- "list of no elomonts It it is chosen instead 6(

ADJSTRlNG. ADJSTRlNG will be repla«.oJ by only AD.ECTWE.)

Neil Rows "8 _GRAMMAR AS A PROGRAMMING LANGUAGE

-

Note that line 35 works becauss whenever a rule substitutes somothing in a sentence, it resumes

saarching just to the.left of the insefted' stuff. (That's to be surb to never "miss" a possible substitution.)
So you can msert stuff |nto the inserted stuff and so on. Hence.line 35 1ust keeps piling up adjechve; in ’ -
front of the noun until it manages to choose the second choice, the empty list.

'Thus thts allows us to. get

THE GREEN PERPLEXED ROBOT SURPRISINGLY LIKES SOME TINY SAD BOY
SUE PERHAPS HATES A BIG GRE"N HAPPY_ MARTIAN
" Finally, suppose we want to have compound s‘bntences, sentences composed of two subsentences

joined by a word like "and”. Change line 10 to read e

B 10 R [SIMPSENTENCE] [NOUNPHRASE VERBPHRASE (11 [(ANQ BUT SINCE THOUGH)

SIMPSENTENCE))] - A

giving: -
-THE TINY HAPPY ROBOT OFTEN LIKES SANDRA AND TOM SURPRISINGLY IS SAD .

and so on. There are many possibilities for further development. N

So in summary here's our new improved sentence generator:

TO SIMPSENTENCE

1) R [SIMPSENTENCE] [NOUNPHRASE VERBPHRASE ([] [(AND BUT S!NCE .THOUGH)
SIMPSENTENCE))] '

20 R [VERBPHRASE] [ADVERB ([VERB NOUNPHRASE] (IS Amsi:nvem A

30 R [NOUNPHRASE] [([DETERMINER ADJLIST NOUN] NAME)) ‘ L

35 R [ADJLIST] [ADJECTIVE ([] ADJLIST)] p

40 R [VERB] [(LIKES HATES BOTHERS BEFRIENDS)]

50 R [DETERMINER] [(THE A SOME)]

60 R [ADJECTIVE] [(BIG TINY HAPPY SAD GREEN PERPLEXED)]
70 R [NOUN] [(BOY GIRL COMPUTER ROBOT MA TIAN)] .

80 R [NAME] [(DICK HARRY SALLY SUE SANDRA)]

90 R [ADVERB] [(OF TEN SURPRISINGLY PERHAPS DUTIFULLY)]
END : o

B. Writing poetry

Consider the problem of writing poems in which the last syllables of the line must rhyme. We

could try:

ey 4 ’ . ’

. Nell Rowe - = : 9 ‘GRAMMAR AS A PROGRAMMING LANGUAGE

e

_TO LIMERICK -
10 R [LIMERICK] [A A B B A]
20 R [A] [DOWN UP DOWN UP DOWN RHYME1]
30 R [B] [DOWN UP DOWN RHYME2] . :
40 R [RHYME1] [(DATE FATE WAIT SATE SMELL BELL HELL WELL-BROKE COKE JOKE YOKE)] -
50 R [RHYME2] [(FEAT BEAT SEAT HEAT WAY SAY BAY HAY MOOD FOOD STEWED RUDE)] :
60 R [DOWN] [(UH AH ER IR AN UN IS US AW E)]

70 R [UP] [(MEAN PROTE VAST SPRILL TRAMMED SLOOSED POUNT GRASP DRUNK)] . ,’
END i .

but th;s runs into a problom:l ‘each tima the interpreter sub;titutos for RHYME1 o‘r RHYME2, it will c’hoose'o
now word." So we have nd way of ensuring that all the A iines or all the B lines will have the same rhyme.
That is, we have no way to force a rhyme. ’ _

It seems what-we need is a "new R command" call it RONCE, that works just like th old except it _'
only chooses once. (See Modification ol in the Appondlx) Uslng it we can rewrite our limerick-writing
program thn; way:

TO LIMERICK ' o

10 R [LIMERICK] [A A BB A)

20 R [A] [DOWN UP DOWN UP DOWN RHYMEI]

30 R [B] [DOWN UP DOWN RHYME2)

40 R.ONCE [RHYME1] [(ATE ELL OKE))

50 R.ONCE [RHYME2] [(EAT AY 00D)] .

100 R [ATE] [(CATE FATE WAIT SATE)] . : .

110 R [ELL] [(SMELL BELL HELL WELL)] °

120 R [OKE] [(BROKE COKE JOKE YOKE)] .

130 R [EAT] [(FEAT BEAT SEAT HEAT)]

140 R [AY] [(WAY SAY BAY. HAY)] -

150 R [00D] [(MOOD FOOD STEWED RUDE)] s

200 R [DOWN] [(UH_AH ER IR AN UN IS US AW E)]

210 R-[UP] [(MEAN PROTE VAST PRILL TRAMMED SLOOSED POONT GRASP DRUNK)]
_.END

A sample limerick:

AH GRASP UN POONT E DATE -~

AN SLOOSED IR POONT UH SATE S
ER VAST AN FOOD ‘ . _)
UNPRILL 1S STEWED. |

AW PROTE IR TRAMMED, US FATE

Our Logo syst?m has a spee_ch synthesizer, so we can generate actual sounds (af in the casea of t_he above)
by figuring out the phonemes necessary for each word.
6. Writing musio | |

- It’s easy to extend these ideas to music. Let’s_ considor a situation in which we're-only concerned«
with spenfymg the pitth and duratlons of muslcal notes We can specufy the pitch as a letter -- assummg

10 “

]

via a "music box".

)

Nell Rowe - 10 GRAMMAR AS A PROGRAMMING LANGUAGE

N--

_ . o _
:the range of an octave, that means lellers C, 0,E F,GA,B, and an upper C which we can call CC. The

duratlon can be either a Q (quarter), H (half), Dl-l (dotted hall), or'W (whole) note. B &

" Theri we can represent s melody by a string: ’For |nslance, .
[CHEQAQ)

represents a C half note follawed by E and A quarter notes.

e

N So here’s a program that writes melodies accordlng to a fow simple harmonic schemes: It first
chooses & harmony for each measure, then constructs measures to fit lhal harmony. To make its’ melody]
little more unlhed it uses RONCE to make sure thal’ measures with the same harmony have lhe saime
rhythm,

TO MELODY
10 R [MELODY] [CCHORD (CCHORD GCHORD FCHORD) CCHORD ([CCHORD GCHORD DCHORD]

[GCHORD DCHORD GCHORD] [GCHORD CCHORD FCHORD]) GCHORD CCHORD],

20 RONCE [CCHORD] [{[CNOTE W] [CNOTE DH CNGTE QJ [CNOTE H CNOTE Q CNOTE QD))

30 RONCE [GCHORD] [([GNOTE H GNOTE H] [GNOTE Q ORDNOTE Q GNOTE Q ORDNOTE Q)]

40 R.ONCE [FCHORD] [{[FNOTE H FNOTE H] [FNOTE Q ORDNOTE Q FNOTE Q ORONOTE Q)]

50 R.ONCE [DCHORD] [([DNOTE H DNOTE H] [DNOTE Q ORDNOTE Q DNOTE Q ORDNOTE Q))] v
100 R [GNOTE] [(C E G CC)] |
-110 RIGNOTE] [(D G B)] - _

120 R[PNOTE][(C F A CC)] | - :

130 R [DNOTE] [(D F A)] -

140 R [ORDNOTE] (DEFGAB) o -

ENC . ’

: Sample melodies are givenQin Fig. 1. With our sySiem you can take such a melody and play sounds for it

o

7. Drawlng a robot face LIRS
n .
* We can apply the idea of a grammar lo drawing designs too. Consider something called, a "turtle"™

-

K <

that lives on a surface of somelhlng llke a lelewslon plclure tube. Suppose he can do two lhlnps he can
move forward a specified dlslance, leavrng a llne behlnd hlm, or he can lurn rnghl a speclfled number (elther
positive or negallve) of degrees. These operallons I W|ll call "FORWARD" and "RlGHT"(whlch can. be
abbrawalad "FD" and "RT"). (He cart only do one of those at a llme) ‘

_ So, for example, these are the commands you would glve the :ifrn. to draw a square:

FDlORTQOFDlORTQOFDlORTQOFDlORTQO \ :

. But it's hard having to draw pictures wllh your pan constantly down For this reason, the turtle also has 8= -

command called "PENUP". It allows him lo move around jusl the same as always, except that he won’t leave

B ¥

2]

-

_Nell Rows - | < 11 GRANMAR AS A PROGRAMMING LANGUAGE

1

» ¢

any line behind him. Normal mode is rostorod by a command called "PENDOWN"

. 50 let's write a grammar to draw “robot” faces. We'll.use a Iarge square for the Head, smal|

" squares fo- the eyes, and small roctangles in a row for tho teoth We Kwake choices as tq whether to have

a tall head or a square head, havo the eyes and mouth high or low in the head, and whethor to show the

teeth in the mouth. - : 7
TO FACE : ‘ .

10 R [FACE] [HEAD (SETHIGH SETLOW) EYES MOUTH] . !

20 R [HEAD] [(TALLHEAD SQUAREHEAD)] .

100 R [EYES] [EYE SETUPEYE2 EYE]

200 R [MOUTH] [SETUPMOUTH (OPENMOUTH SIXTEETH)] L

210 R [SIXTEETH] [TOOTHPLUS TOOTHPLUS TOOTHPLUS TOOTHPLUS TOOTHPLUS TOOTHPLUS]'

220 R [TOOTHPLUS] [TOOTH PENUP FD 10 PENDOWN] : . .

300 R {SETHIGH) [PENUP FD 80 RT 90 FD 20 PENDOWN]

310 R [SETLOW] [PENUP FD 50 RT 90 FD 20 PENDOWN]

320 R [SETUPEYE2] [PENUP FD 40 PENDOVIN)

330 R [SETUPMOUTH] [PENUP FD 19 RT 90 FD 55 RT 90 PENDOWN]

END

‘where the remaining undefined words are just rectangles and squares of. various sizes. They can be
defined by a length and a width:)

TALLHEAD as 140 by 100 L >

SQUAREHEAD as; 100 by 100 ‘

EYE as 20 by 20

OPENMOUTH as 60 by 15

TOOTH as 10 by<15
Sample faces are given in Fig. 2.
8. Drawing snowflakes

" Now let’s write a grammar to draw so-called "snowflake curves®, by making up a list of FD and RT
lnstruchons, and then execuhng them in sequence. "Snowflake curves” are a progresswe sequence of
drawlngs \Ilke those in Fig. 3 They follow rules somethmg like thls

T0 FLAKE

10 R [FLAKE] [SIDE R SIDE R SIDE R]

20 R.ONCE [SIDE) [([FD 1] [SlDE L SIDE R SIDE L SIDED)]

END _
whet’o R stands f0r' "RT 120" and L stands for "RT -60" (whlch is the same as turning left 60).

* Line 20 says that at any point in the procoss, olthor mako all the SlDEs straight lines or e|se

elnborate all of thom But this runs, into a curious problem: if we take tha soc0nd choice in that line, we'll

,never get out of line 20, because wdh every substitution for SIDE four new SlDEs are added that must also

..
’ 1
. N .

g

———— R -5 e T P, -

" Neil Rowe 12 GRAMMAR AS A PROCRAMMING LANGUACGE

v

be substituted for! (Like Hercules and the Hydra) But on the other hand, if we made line 20 a R rather
than R.ONCE command we wo'u|d be getﬂng asymmetrical snowflakes, which isn’t what we want either.

~ We could avoid this problem if we just never again touched things we substituted into the
grammar. .(See Appendux, Modlfucahon #2.) But this runs into a further problem that we'll never come back’
to llne 20 after wo're through with it, and line 20 might have left SIDEs in the string. So modify the
grammar c0ntro| structure so that Imes of the grammar get sec0nd chances”, We'll still koep the idea of
applylng the rules in the speclfled order, but when we come to the end of them, we'll g0 back to the
begmmng again. So we'll r‘epeatedly qycllo througi: until there’s nothing left to substitute for. (See
Appendix, Modification #3).

" 50 now the FLAKE we originally wrote works.
9. Drawing hydfooarbons |

We hcam ‘use'grammars to explore some aspects of chemical structure. Consider the following

arammar for drawmg some hydrocarbonS° |

- TO HYDROCARBON

© 10 R [HYDROCARBON] [MARK "C* CHAIN LT 90 CHAIN LT 90 CHAIN LT 90 CHAIN LT 90]

- 20 R [CHAIN] [(HATOM HATOM HATOM HATOM HATOM CATOM C2ATOM)] :

30 R [HATOM) [SHORTDASH MARK "H" RT 180 SHORTDASH]
40 R [CATOM] [DASH MARK "C" LT 90 CHAIN LT 90 CHAIN LT 90 CHAIN LT 90 DASH]

* 50 R [C M] [DASH MARK “C" LT 90 CHAlN LT 90 DOUBLEDASH MARK "C" LT 90 CHAIN LT SO
CHAIN DOUBLEDASH DASH]\
END

where MARK is a cdr-nman'd that draws a letter, and where DASH, SHORTDASH, and DOUBLEDASH are defined
“ih the obvious way. | '

The érarﬁf‘har builds up a molecule by starting with a carbon atom and attaching to each of its four
sides either a hydroge'n atom, a single-bonded carbon atom, or a double-bonded carbqn atom pair. In the
cuse ‘'of the last two, the process is repeated for bonds of those carbon atoms,

. Note that since the entire molecule must be drawn by a step-by-step process, "backing up" must
be done at times -- when you draw an H, you must back up to the center of the sttached C. That’s the
rp;son for the 'extrn SHORTDAGSH, DA~SH, and DOUBLEDASH In lines 30, 40, Iand 50 -- they're just ways of
backing up. The easy way to do this in this case is Just to redraw the dashes going the other direction,

since they're all symmatrical.

. o " 13

&

.- Neil Rowe : e _ .13 __ GRAMMAR AS A PROGRAM!NNQLANGUAGE

<

Some sample chemical structures are given in Fig. 4.

_’10 Drawing hills
~ Let’s write a grammar for drawing diff'ereht sizes of “hills” -~ that is, lines that slope up, then.
~ downina symmetrical way. We could try: - : |
TO HILL : ' _ . B
10 R [HILL] [RT -45 PEAK RT 45] '
20 R [PEAK] [FD 10 (PEAK [RT 90)) FD 10]
END
which gives “hills” like those in Fig. 5.
But now what about making the slopss more gradual, like real hills? One way might be to follow a
set of commands like this:
uuuDDDDDDUUU
where "U" stands for the upward-curving arc "FD 2 RT -5" and "D" stands for the downward-curving arc
"FD 2 RT 5" Fig. 6 shows a few of this type of hill.
For a grammar, this suggests (essuming the original control structure, withof:t the modifications):
~ TOHILL ‘ .
I0R[HILLJ[UD (HlLL mou . . ‘
) END ' | {
. (Remomber, the] roprosonts a list of no words at all. So If the random choice chooses it, HILL will bo)
replaced by [UDD U})
But this doesn't work. It generates the U's and D's alternately, like
upupuDDUDUDU
L]
instead of what we want:
uuuDDDDDDUUU
So wo could try (assuming Modification #3, cyclic rule application):
TO HILL
10 R [HILL] [UPSLOPE DOWNSLOPE]
20 R [UPSLOPE] [U (UPSLOPE [)) D]
30R [DOWNSLOPE] [D (DOWNSLOPE ul
END

) but that means that the two slopes can be of different heights, as for instance.

UuuuuUUUUDDDDDDDDDDUU

14.

_NelRews. 18 GRAMMAR AS A PROGRAMMING LANGUAGE

which isn’t what we Want either. ‘Is there a way out?
11. Introduoing oontext-sensitivity

It seems we’ve come up against a basic Ilmltatlon of our grammar Interpreter, That is, we con by |
the RONCE force the grammar to make a consistent choice (expansion) in several instances of the same
s.ymbol. This is one way of getting coordinated substitutions. But we caﬁnot make one choice affect
another. That’s what‘ we need in this hill exampla -- we have to create two independent types of -
symmetry. .

What we need is some way to restrict the application of rules t9 only particular contexts. The .

simplest way might be to make the first argument to the R and RONCE commands, which represents the

stuff we’re looking to match, be more than one word. (See Appendix, Modification #4.) That way we could
write . ‘ .
, R [U MIDSLOPE] [U U MIDSLOPE D]
meaning that-we want every occurrence of MIDSI OPE that is pro{cgded by an U to have another U inserted
in front of it, and another D inserted after it. So we could write the hill-drawing program this way
" (assuming that Modification #1 (R.ONCE), Modification #2 (no immediate replacement of substituted words),
and Modification #3 (cyclic rule application) are still in effect):
TO HILL
10 R [HILL] [U MIDSLOPE D D MIDSLOPE U]
20 R.ONCE [MIDSLOPE] [([] MIDSLOPE)]
30 R [U MIDSLOPE] [U U MIDSLOPE D]

40 R [D MIDSLOPE] [D D MIDSLOPE U]
END

where, as before, "U" Stqnds for "FD 2 RT -5" and "D" for "FD 2 RT 5". We can indeed now draw the hills
of Fig. 6.
12. Number theory

As a final example of what we can do with grammars, note that some number-theoretic ideas can
be defined by them. For oxamplo, we can zonorato all odd powers of two by a one-line grammar:
TO ODDPOWER2 |

é 0 R.ONCE [ODDPOWER2] [([2] (2+ 2 s ODDPOWERZ])]
NO

Or write out strings consisting of an odd power of 2 number if X's:

\ .t

* Neil Rowe | : 15 GRAMMAR AS A PROGRAMMING LANGUAGE

—

.

TO ODDP2
10 RONCE [0DDP2] [([X X] [0DOP2 ODDP2 ODDP2 ODDPZ])]
END
Or you could generate members of the Fibomcci‘serlos, using our HILL grammar as s model (assuming all
w;‘i:-)dmcatiOns in effect except #2):

TO FIBO .

10 R [FIBO] [A + B] .

20 RONCE [A] [(1 NEWB)]

30R[1+B]I[1+1)

AOR[B+11[1+1]

50 R [B] [FIBO]

60 R [NEWB] [B]

END _

The final st}ing produced will be aiternating 1’s and +'s,like 1 +1 +1 + 1 + 1. While it is,bei'ng generited,
the string consists of A’s and B's a'iternating with +'s. The number of A’s represents the nth Fibonscci
numbér, the number of B's the (n+1)th Fibonacci number, and hence the total number of tetters the (n+2)th
Fibonacci number.

Line 20, the only line where a choice is made, decides whether to replace all symbols by 1's now
or 36 6n to generate the next largest Fibonacci number. Lines 30 and 40 are just to ensure that when you
are finishing the generation and 1 is the selection in line 20 (i.e,, all A's are changed into 1’s), all B’s will be
changed into 1's tod. _

13. Additional projects

Try writing grammars for the following.

1. Simple stories, e.g. fables
. Stereotyped newspaper stories
. Advertisements
. Mantras }

. Something like SiMPSENTENCE but with subject-verb agreement in number (singular vs. plural)
. Or ability to use "an" and "s" properly

. Or ablllty to substltute a pronoun (the correct ono) occasIOnally

. Simple sentences in some foreign langusge

[T+] o NSO o H [N

. Simple dialogues between two or more people (e.g. plays).
: i

16

Neil Rowe © 16 GRAMMAR AS A PROGRAMMING LANGUAGE

10. Musical melodies ‘based on melodic (is Oppdsed to harmonic) considerations. For instance,
consider which notes of the scale sound good eﬂer a parhcular other note of the scale..

11. Passecagllas on a gwen ground, thet is, music with a bass (lowest) part thet conststs of a

i

short melody repeated over and over - ’ ' _

12. Rondos where the ‘sactions are all in'ternary form; that is, music c0nsust|ng of asingle sectIOn
elternetlng with other sectlons (es for |nstence ABACADA)rwhere each-section-consists loree-paﬂrlhe
first and Iest parts being |dentlca| (ABA) |

13. Ditferent klnds of smple houses

14, Apartment heuses of random size and shape, with shades drawn for random windows, plants In
the window for rendom windows, etc. ‘ |

15. Speee-fllling curves; t'het‘.. is; gi\ren a square region of fixed size, a line within it such that any
point within the square is closer then some small fixed distance a\'way from tne line. _

'16. Trees and bushes. Find :eut ‘something about_the way,,_r,eal ‘ones grow (like_how far between
.brenches, or what angles the branches are likely to grow out at), and try to modei it. o,

17. A dtfferent kind of chemical structure. Try using c0ntext-sensltwe rules to eliminate
chemically |mposslbl_e 'Or. unltkely configuretmns.

\ 18. Sirnple nertide eh'ysics. That I:s, try to craate _bybble chamber particle tracks. For example, a
neutron (moving-in a streignt'lline) hits another barticle and breaks up into a proton (moving in a clockwise
curve) and an electron (rnowng ina cq‘unterclockwlse cprve). bothv_of which eventually' decsy into something _'
eise. (Note thatﬂ serne particles are inv.i'sible.) '

19. Some kind of electronic circuit diagrams, perhaps digital logic
20. The rows of Pescal s triangle
21. Composite (not prime) numbers
: 22-~"Agendas"~for ‘your -daily ‘activities |
<~14. Further oontrol structure modifications.
As you may observe, one of ‘the nicest things about this system Is the relative esse of making

changes to the control structure ‘(o‘r interpreter), thanks to its reletlve simplicity. This paper has

‘Introduced four significant improvements to the original "bare bones” interpreter: the RONCE festure,

ERIC | 7 -

'context-sensltiwty Many further projocts are suggested, some from current work in linguistics.””

.15. Parslng. turnlng the grammar aroupd

Neil Rowe ~ 17~ GRAMMAR AS A PROGRAMMING I.ANGUAG.E

preventing rules from reworkl'ng just-substituted words, Cycllc rule applicatibn, end simple

3,4

For one, it might be nice to have a "wild-card™ symbol that will match anything. That is, assuming
to be that symbol, we could rewrite HILL to be this way:

TO HILL ' ‘

10 R [HILL] [L MIDUP R R MIDDOWN L)

go R [MIDUP » MIDDOWN] [([»] [L MIDUP R # R wooown LN
ND

~ where # will match whatever is between the MIDUP and MIDDOWN. s

i

Extending this, we might like to speclfy for part of the matched pattern, not just nxthmg, and not
\
just a single word, but something in between. Like for a sentence genor_ntlng program:

R [#ADJECTIVE] [(INCREDIBLY AMAZINGLY FRIGHTENINGLY) #ADJECTIVE]

where sADJECTIVE matches anything that is an adjective.

A:-very powerful idea that might be used is that of the linguistic transformation. This means rule_s
that work on strings but take into account how tho strmgs were generated (their “"derivational™). An
examplo would be tho passwe transformatlon as in tho following crude form: |

R [oNOUNPHRASEl #VERB sNOUNPHRASEZ] [oNOUNPHRASEZ BE oVERB BY sNOUNPHRASE1]
whlch takes whatever the NOUNPHRASEL has been #xpanded to and makes it-.the object of an agent
pr,eposlhonallphraso, and takes whatever NOUNPHRASE2 has been -expanded to and makes it _tho subject.
So for instance ‘ | - |

THE BIG PINK ROBOT HATES NASTY BOYS
could becomo, after applying tense rules to change BE to ARE

NASTY BOYS ARE, HATED BY THE BIG PINK ROBOT

Adding this facility invoives sémo challongiﬁg probloms

An mteroshng pro;ect is to "turn the grammar around” and use it to analyze strings of w0rds,

rather than create them. For lnstonco, ; is a given simplo sentence grammntlcal English? Or does a given

" picture of a face show teeth?

A way to do this is just “run a grammar backwards Thnt s, you.start with a string and the fast

i8

. Neil, Rowe = S 18 GRAMMAR AS A PROGRAMMING LANCUAGE
rule of a grammar You then try to find a match between things in your string and the second argument to

the R command. (If the second argument contains choices, try every possibiiity.) 1f -you find a match,

substitute the first argument. This approach works fine for many context-free grammars.

N,

- 168. Educational utility _ | ' . S

I have tried here to gwe a concrete example of what has been called "learner- contr\tted
computnns"5 How useful is it educetronally? One Incldent may be revealing. When [hrst introduced this
| system to the author of the postcard-writing program given at the beginning of this paper, I had him write
8 grammar for simple sentences. He was studying English and German at his school, so he had a- fair
exposure to what is referred to in the schoole as "grammar”. So | said, "We need some kind of sentence
pattern. Howv about noun-verb-noun?”
It sounded familiar to him. So he wrote -
TOS
10 R [S] [NOUN VERB NOUN] .
20 R [NOUN] [(PEN BOOK CAT DOG)]
and then said, "Wnet's a verb?" |
"An action word " 1 said, essuming that a hint would be sufficient. He looked 2 little mvstiﬁed. but
I prompted to go ahead and try something out, since he could easily change it later. So he wrote X
30'R [VERB] [(IS DULL HARD HOT ANGRY)]
ran his program, and got back
© BOOK HARD CAT ~ '
DOG ANGRY PEN . v
CAT HOT BOOK ’
) Sentences generate'd by his own roles stared up at him from the page. He was surprised; and a little
| amused: And he began to think about wh‘et a verb reell)rl_wns, something which, despite his survlt/el of
many y'ears" of. tormal education, he hadn't reelly come to gries with. Verbs; ss tn fact nouns, must be
actton words"®, concepts defined by a reletlonshnp wvthtn 'y sentence

This is a lot healthier approach to grammar than sny emount of ultimately arbitrary deflnitione

And [think it leads to & better understanding of what a verb really is.

19

Neil Rowe " 19 GRAMMAR AS A PkOGRAMMlNG LANCUAGE

w
<

| Appehdix: ‘2 Loéo lnﬂlpl_ementatlon :
The ov.erall structure. of t_h; components (procoduro';)ais like this:
SAY | ‘ |
user’s procedure (gnmm;r)
' :
MATC‘IP.EPLACE
EXPANSION
mmgcnomz
T

SAY is the top-level procedure. It sets the initial word list te the list consisting of one name, the name itis
called with. It then applies the rules in order to this list, making the necessary substitutions.

TO SAY :PROCNAME

10 MAKE "STRING :PROCNAME
20 RUN :PROCNAME

30 PRINT :STRING
40 SAY :PROCNAME

END .

R is the procedure that executes a particular grammar-rule. It replaces in the :S'_TPING list all occurences of

- tSYMBOL by :REPLACEMENT. - ' | : r

70 R :5YMBOL :REPLACEMENT . e -

_10 MAKE "STRING MATCHREPLACE :STRING :SYMBOL - - o7 :
END ' ’ ' .

MATCHREPLACE is the workhorse of the grammar. It goes through the :STRING list word by. word. If it
finds an-exact match hetween the :SYMBOL and a word of :STRING, it replaves that word by the -
.REPLACEMENT list. (Note that :REPLACEMENT is a free variable, not an argument, in this procedure, to
save a little argument-passing.) It then goes to the beginning of the substitution and resumes the ssarch
process from there. ‘ : o

- oy - o
.. TO MATCHREPLACE :STRING :SYMBOL
«. 10 IF (EMPTYP :STRING) OUTPUT :STRING _
20 TEST ((F :SYMBOL) = (F :STRING)) : L
: 30 IFTRUE OUTPUT (MATCHREPLACE SENTENCE (EXPANSION :REPLACEMENT) (BUTFIRST :STRING)
:SYMBOL) o L - .

" 40 IFFALSE OUTPUT SENTENCE (FIRST :STRING) (MATCHREPLACE (BUTFIRST :STRING) :SYMBOL)

° . - — — . s

Neil Rowe I 20, GRAMMAR AS A PROCRAMMING LANGUACE

hl

EXPANSION expands the "replacement” {second) part of the R rule. It forms a single simple list for
substitution into :STRING. For parenthesized expressions it makes.a random choice as to which item to use;
_ for brackets it takes the whole list within the brackets. (Note that the procedure assumes that a sublist .
just inside a bracketed list is parenthesized, and vice versa; it /doesn’t actually check.)

“TO EXPANSION :STRING - ,
10 IF EMPTYP :STRING THEN OUTPUT []
20 TEST LISTP FIRST :STRING -
30 IFFALSE OUTPUT SENTENCE (FIRST :STRING) (EXPANSION BUTFIRST :STRING)
ST ‘)40 IFTRUE OUTPUT SENTENCE (EXPANSION RANDCHOICE FIRST :STRING) (EXPANSION BUTFIRST
:STRING) L _ S
- END

RANDCHOICE figures out the Izngth of a list, generates a randorﬁ number from 1 up to that nuinbor, and

outputs that numbered item of the list. (RANDOM X :¥ outputs a randOm integer of the range :X through
Y.)

TO RANDCHOICE LIST
10 OUTPUT ITEM (RANDOM 1 (COUNT LIST)) LlST
END ;

- ITEM outputs the Nth item of list L. .

TO ITEM :N <L

10 IF EMPTYP ;L. THEN OUTPUT (]

20 IF (:N < 2) THEN OUTPUT FIRST :L
.30 OUTPUT ITEM (:N - 1) (BUTFIRST 1)

END o

Modification #1: substituting the sarﬁe choice in all places

Write a new procedure:

TO R.ONCE :SYMBOL :RFPLACEMENT

10 MAKE "REPLACEMENT (EXPANSION :REPLACEMENT) -

20 MAKE "STRING MATCHREPLACE :STRING :SYMBOL

END ‘ ;
"This works because if we expand the :REPLACEMENT list before calling MATCHREPLACE (the string
searching prdcedure), the resulting list will consist of no sublists, and hence cannot be expanded further.

. Modihcation #2: avoudmg chanm substitutod stuff

“Itis lust noce;ssary7 +to chango the llno in MATCHREPLACE line 30, which determines what to work
on next after a match is found. Chango it to

: .30 IFTRUE OUTPUT SENTENCE (EXPANSION REPLACEMENT) (MATCHREPLACE (BUTFlRST STRING)
SYMBOLS)

assuming Modiﬂ}cat,ion o1 to have also been made, "~

~ Modification #3: cyclic rule S'pplication

To do this, write fhesg two new outer. procedures: -

21

e

| NelRows - .- : 21 'CRAMMAR AS A PROGRAMMING LANGUACE

TO DOIT :PROCNAME

10 MAKE "STRING :PROCNAME :

20 CYCLETHRU :PROCNAME ' .
30 RUN :STRING ' '

40 DOIT :PROCNAME

END

TO CYCLETHRU :PROCNAME
10 MAKE “"CHANGEFLAG "FALSE
20 RUN :PROCNAME

30 IF (-CHANGEFLAG - "TRUE) CYCLETHRU PROCNAME
END .

And change MATCHREPLACE S0 as to set the flag to "TRUE whenevor a substitution is actually made in the
string: . v

25 IFTRUE MAKE "CHANGEFLAG "TRUE

So CYCLETHRU will stop wherever not a singlo rule of the grammar was applied on axocution of
the grammar procedure. . .

Modihcahon a4 matching for more than one word

We can just modify MATCHREPLACE to handle a SYMBOL which is “more than one. word (here '
~ assuming Modification #2 and #3 still in effect). COUNT gives tho number of items in a list.

TO MATCHREPLACE :STRING :SYMBOLS .

10 IF ((COUNT :STRING) < (COUNT :SYMBOLS)) QUTPUT STle
- 20 TEST MATCHP :STRING :SYMBOLS - -

25 IFTRUE MAKE "CHANGEFLAG "TRUE

30 IFTRUE OUTPUT SENTENCE. (EXPANSION :REPLACEMENT) (MATCHREPLACE (DROPNUM (COUNT

* :SYMBOLS) :STRING) :SYMBOLS) .

40 IFFALSE OUTPUT SENTENCE (FIRST :STRING) (MATCHREPLACE (BUTFIRST .STRlNG) .SYMBOLS)
END .

Procedura MATCHP checks to see if SPDRTSTR!NG exactly corresponds to the uegmning of BlGSTRlNG.
o T0 MATCHP BlGSTRlNG :SHORTSTRING :
10 IF (EMPTYP :SHORTSTRING) THEN MAKE "CHANGEFLAG "TRUE OUTPUT "TRUE
20 TEST ((FIRST :BIGSTRING) = (FIRST :SHORTSTRING))
‘30 IFTRUE OUTPUT MATCHP (BUTFIRST :BIGSTRING) (BUTFIRST SHORTSTRlNG)
40 IFFALSE OUTPUT "FALSE :
END .

Procedure DROPNUM outputs :LST with the specified number of items droppqd oft its front end.

TO DROPNUM :NUMITEMS :LST *
10 IF (:NUMITEMS < 1) THEN OUTPUT 45T« -

© 20 OUTPUT DROPNUM (:NUMITEMS - 1) (BUTFIRST 4.5T)
END

. . . -
H -

Neil Rowe o - 22 GRAMMAR AS A PRQCRAMMING LANGUAGE

o

Acknowledgements .
. R i]
The ideas presented here are not particularly original. There is a {arge body of knowledge
ragvarding grammars and pars_ing within computer scianoa. The idea of writing grammars in Logo as. e

student programming project is due to Ken l(ahn6 He constructad a system similai to, but more limited

than that dascrlbad here, to provide a framawork for genaratmg English sentences. I have tried to extend

'and clarity his work, in particular by rewriting the interpreter to make it more accessvble to student

undarstanding and tinkering.

Another major influence has Jbaan the work of Ira Goldstein and Mark Miller7 in specifying a

- grammar for a broad class of programming procasses. This work emphasizes the grammatical nature of

programming. Mention should =lso be made of the “production system” model. of Allan Newell and Herbert
A, Slmo"n.g

~ As far as specific precedents, there is SNOBOL, a computer language contalnir\g as & subset

~ several facilities. for srammar—lika activltias9 Howeva'r.‘S'NOBOL is not primarily an lntaracllve languaga.

its dasign bias emphaslzas code atilciancy. not languaga usability Thase features tend to maka it

— . P

unsuitable tor educational use.

There is also speclilc work dataillng methods of employing grammars In particular

10 11,12,13,14 4 ﬂn.uy,

domains. l must acknowledge the work of Saymour Papert and others in

developmg a new kind of learning anwronmont based around the use of the computer language L93o.

Thanks to Hal Abelson, Andy DiSessa, Ken Kahn, and Mark Miller for help with tt\is paper.

. Referdnoes

1. Seymour Papert, "Uses of Tachn-ology to Enhance Education™, MIT Artificial Intelligence .

Laboratory Logo Group Memo #8, June 1973.

2 Hal Abelson, Nat Goodman, and Lee Rudolph "Logo Manual®, MIT Logo Memo #7; June 1974; or’

" contact the author for a draft of his manual ln preparation.

- 3. Emmon Bach, Syntactic Theory, Holt, Rinehart, & Wlnston. 1973.

4, Andreas Koutsoudaa. ertlnj Transformational Grammars An Introduction, McGraw-Hill, 1966

5. Stuart D Mllnar. "Laarnar-COntrollad Computing: A Dascrlptlon and Ratlonala. Journal of

Educational Technology Systems, Winter 1974. p.207,

23

2

. "Neil'Rove _ 23 GRAMMAR AS A PROCRAMMING EANGUAGE.

8
~
<

6. Ken Kahn, "A Logo Netural Language System MIT Logo Group Working Paper #46, December 3,

]

19750 ' , Lo _‘ : <,
7. Ira Goldstein end Mark Miller, "lntelttgent Tutoring Programs: A Proposal For Research®, MIT
Logo Group Working Paper 850, 1976.

. 8. Allen Newell and Herbert A. Simon, Human Problem Solvirm, Prenttce-Halt 1972.

9. James F. Gimpel, Algorithms in SNOBOL4, Wiley, 1976.

10. William A. Woods, "Mathematical Linguistics and Automatic Translation®, Harvard University
Aiken Computation Laboratory, Report No. NSF-19 (September 1967). '

11, David E. Rumelhart, "Notes on a Schema for Stories”, in Representation and Understanding,’
Babrow and Collins, ed, 1975, p.211. '

Qe

o

12 Gahan Wltson, "The Science Fiction Horror Movie Pocket Computer y in National Lempoon TI*q

egerbeck Consptracy, Warner, 1974.

13. Terry Wlnograd, “Linguistics end 'Computer Analysisv of Tonal Harmony", Journal of Music B

. heorx, 12 1 (1968), p2 —

s

14 A. C Shaw, “A Formal PlctUre Description Scheme as a Basis For Prcture Processing Systems ,

Information and Control, 14, 1969, p.5

-1

.GRAMMAR AS A PROGRAMMING LANGUAGE -

24

Neil Rowe

ooy
 w—

4

oo|
—

=R |

oollooi|loo
'] o amm [rrsen]

ao
[

29

Uu—u-I

* ell Rowe , 2. GRAMMAR AS A PROGRANMING LANGUACE

3
. - .) N
. L . . . l‘. .
’ L& * . ’ ’
3 - ‘ \

~ C. -
v . Y . T
é - \\\
. o . f v i
. .o))
:

e

. - —_— e -

6 _Fige

